Homework #2 - Due Friday, September 06, 10 am

Name:

Here, GS = Goldstein, and TM = Thornton and Marion. As with research, feel free to collaborate and get help from each other! But the solutions you hand in must be your own work.

1. Conservative forces?

We discussed how work done in moving from one point to another is path-independent; work vanishes for a closed path. This is a property of conservative forces. Relating this to Stokes' theorem concludes that any conservative force must have a vanishing curl:

$$\vec{\nabla} \times \vec{F} = 0 \tag{1}$$

For the following, calculate the curl of the given vector field and comment on whether the force is conservative or not. If it is conservative, find the potential energy $U(\vec{r})$ associated with the force.

- (a) $F_x = ayz + bx + c$, $F_y = axz + bz$, $F_z = axy + by$.
- (b) $F_x = -ze^{-x}$, $F_y = \ln Z$, $F_z = -e^{-x} + y/z$. Consider only for z > 0.

2. **GS** 1

Show that for a single particle with constant mass the equation of motion implies the following differential equation for the kinetic energy:

$$\frac{dT}{dt} = \vec{F} \cdot \vec{v} \tag{2}$$

while if the mass varies with time the corresponding equation is

$$\frac{d(mT)}{dt} = \vec{F} \cdot \vec{p} \tag{3}$$

3. TM 7.1

Find a suitable set of generalized coordinates for a point particle moving on the surface of a hemisphere of radius R whose center is at the origin.

4. TM 7.3 modified

Consider the case of projectile motion under gravity in two dimensions: a cannon in an x-y plane firing a cannonball with some initial velocity \mathbf{v}_0 at some angle θ from the horizontal x-axis.

(a) Find the equations of motion in both Cartesian and polar coordinates.

(b) Comment and discuss which of the two coordinate systems one should choose as generalized coordinates.

5. **GS 14**

Two points of mass m are joined by a rigid weightless rod of length l, the center of which is constrained to move on a circle of radius a. Express the kinetic energy in terms of generalized coordinates.

6. **GS 19**

Obtain the Lagrange equations of motion for a spherical pendulum, i.e. a mass point suspended by a rigid weightless rod.